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Buying.com is a decentralized, e-Commerce Network with cybermediation plat-

form features, allowing businesses and individuals access to products at whole-

sale prices. Furthermore, Buying.com leverages existing distributors along with its 

own microdistribution network in order to achieve two-hour thresh-old delivery 

time for fast-moving consumer goods. The current paper gives an overview of the 

Buying.com and its unique value proposition and expounds on the technical 

aspects behind the platform. Specifically, it covers the Stellar blockchain 

technology used by Buying.com and its Stellar Consensus Proto-col (Federated 

Byzantine Agreement). It provides a solution to the problem of multi-objective 

optimization of last-mile logistics and discusses several aspects of platform 

governance as well as the cryptoeconomics of the ecosystem. 
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1 Introduction 
 

 

E-commerce sales in the past few years has accelerated tremendously with reports 

that the global B2B e-commerce market was worth $7.7 trillion in 2017 (1). There are 

some 1.3 mil-lion e-commerce companies in the U.S. alone. Worldwide, that figure 

rises to 2-3 million e-commerce companies, excluding China. The opportunity to 

convert more global businesses into new age e-merchants is substantial. 
 

The current ecosystem for e-commerce has evolved from the mid-90s during the first 

wave of internet technologies, with most major brands and retailers maintaining a web and 

mobile e-commerce presence. Several dominant players such as Amazon.com, 

Walmart.com and others have emerged for mass market retailing of a wide variety of 

products. If one were to decon-struct the current state of the e-commerce ecosystem, it 

would involve several operational com-ponents: Storefronts (Shopify), Payment Processing 

(Paypal, Stripe), Shipping and Fulfillment (Fedex, UPS), Backoffice processing (Salesforce). 

 
Despite the history and the growth of this industry, inefficiencies persist 

throughout the ecosystem: 

 

Last Mile Distribution: This is a problem not only for small retailers but big retailers 

as well. Amazon has recently purchased Toys R Us and Whole Foods to some 

extent to expand their distribution channels. The recent introduction of Amazon 

Flex (2) where people can sign up to deliver goods for Amazon aims to address 

this but even then last mile peer-to-peer microdistribution is not yet a reality. 

 
Purchasing Power: While more consumers go online to purchase goods and services, 

there is no efficient mechanism to consolidate their purchases to derive wholesale pricing. 

 

Fragmentation: Smaller retailers do not have access to a vertically integrated 

service platform to pose a serious threat to larger retailers such as Amazon. 

This results in their having to use a fragmented set of operational components. 
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2 Buying.com: The Solution to e-commerce Inefficiencies 
 

 

Buying.com is a company that aims to reshape the landscape of e-commerce by 

providing so-lutions to the inefficiencies of the ecosystem thus benefiting both the 

supply and demand sides of the equation. Distributed ledger technology (blockchain) 

provides Buying.com with new asymmetric advantages that enables it to apply 

solutions which were not available in earlier-generation platforms. The unique value 

proposition of the platform comprises several innova-tive solutions. 

 

Microdistribution: With Buying.com e-commerce becomes fully decentralized by turn-ing 

every garage into a distribution center. In addition to distribution centers run by 

Buying.com, now anyone can become a node on the Buying.com network by staking 

tokens (buy-in) and leveraging existing yet latent storage capacity in their garage to be-

come a microdistribution center. This solves the last mile logistics issue that has plagued e-

commerce for the longest time. It is similar to how Airbnb turns every spare room in a home 

to a hotel room, or how Uber leverages excess driving capacity to turn every auto-mobile 

into a taxi. Fast moving consumer goods (FMCG) ordered on the Buying.com app can be 

delivered to consumers within two hours. This empowers all e-commerce and retail players 

to not only compete, but in many cases outperform established giants in the indus-try that 

have distinct advantages at the moment. A fully decentralized solution addressing delivery 

inefficiencies will be disruptive and transformative for the e-commerce sector. 

 

Bulk Pricing: Consumers and businesses would like to enjoy large purchase pricing 

dis-counts but that is not always possible because minimum order quantities (MOQ) 

needed for bulk pricing are not achievable. The Buying.com protocol leverages the 

purchasing power of millions of consumers and small businesses to reach MOQ levels. 

This enables online stores and consumers to receive direct from manufacturer pricing 

through bulk order quotes with best possible pricing on products. 
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Real-Time Logistics: Leverages blockchain solutions to deliver real-time 

logistics data, provides transparent, smart-contract enforced audit trails, and 

protects users with data en-cryption. Manufacturers, businesses and 

consumers will all have seamless access to real-time shipping data to optimize 

dropshipping costs provided by a permissionless, public blockchain. 

 

BUY token: The Buying.com protocol utilizes its own cryptocurrency, named 

BUY, for transactions on the Buying.com platform. 

 

Transaction Payments: Buying.com’s protocol transactions will escrow 

payments until customer receives the ordered goods and is satisfied. Once the 

delivery is cleared, funds are released. This will significantly reduce 

chargebacks, a commercial problem costing retailers billions every year. 

 

Transparent and Auditable: Blockchain technology offers customers a fraud-proof dig-

ital ledger of verifiable transactions and hence a transparent, immutable audit trail. 

 

The current paper focuses on the technical aspects of the Buying.com platform and 

how these affect the overall ecosystem. Section 3 covers the blockchain technology 

used by Buy-ing.com, namely, the Stellar platform. The next section (Section 4) gives a 

detailed analysis and proposed solutions to the problem of multi-objective optimization of 

last-mile logistics. Section 5 deals with the platform governance (i.e., consensus 

algorithm, Ricardian contracts, proof-of-delivery mechanisms) while the subsequent 

section discusses network scalability and attendant effects (Section 6). The paper 

concludes with a presentation of the cryptoeconomics of the ecosystem. 
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3 The Buying.com Platform and Protocol 
 

3.1 Decentralized Network Architectures 

 

Traditional Client-Server architectures are currently being supplanted by decentralized 

comput-ing platforms wherein ecosystems of organizations and individuals participate and 

share data. A decentralized network consists of peers that can run independently of each 

other. The power to transmit information is distributed among a network of servers, instead of 

being driven from one primary source. For this reason, data silos are a thing of the past in 

decentralized computing, and this is made possible through the use of Distributed Ledgers. 

 

3.2 Distributed Ledger Technology 

 

Distributed Ledgers can be developed using a number of different technologies including blockchain 

(e.g., Ethereum Hyperledger) and directed acyclic graphs (e.g. IPFS, IOTA), and there can be both 

permissioned and public distributed ledgers. Layered on top of distributed ledgers, depend-ing on the 

application at hand, is the concept of cryptocurrency. This is particularly applicable in public 

distributed ledgers such as Ethereum, Bitcoin, IOTA, and others. A distributed ledger 

 
is a database that is consensually shared and synchronized across the network and 

spread across multiple sites, institutions or geographies. It allows transactions to be 

immutable and publicly verifiable thereby making a cyberattack more difficult. 
 

Another useful concept in decentralized computing is that of smart contracts. A 

smart contract can be thought of as code that acts upon data stored in a distributed 

ledger, very similar to how stored procedures and triggers in traditional database 

technology operate on data stored in tables. So, taken in aggregate, a decentralized 

network could be thought of as a combination of network, logic, and data. 
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Figure 1: Comparison of Stellar to Ethereum. Reproduced from https://www.stellar.org. 
 
 

3.3 Stellar Network 

 

A public blockchain infrastructure provides an ideal solution to address the problems outlined in 

the previous section and implement the unique value proposition of Buying.com in a trustless 

environment. The Buying.com Protocol is based on the Stellar blockchain network (3). 

 
The Stellar decentralized ledger records a list of all the balances and transactions belonging 

to every single account on the network. A complete copy of the global Stellar ledger is hosted on 

each server that runs the Stellar software. Any entity can run a Stellar server. 

 
Figure 1 compares Stellar to Ethereum in terms of average verificaton time, price per trans- 
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action, features, and security. 
 

The Stellar servers communicate and sync with each other to ensure that 

transactions are valid and get applied successfully to the global ledger. This entire 

process of coming to consen-sus on the Stellar network occurs approximately every 2-5 

seconds and uses the Stellar Consen-sus Protocol (SCP) which is an implementation of 

Federated Byzantine Agreement (FBA). The Buying.com protocol uses a modified 

(SCP). A detailed explanation of the consensus algorithm can be found in Section 5.2. 

 

3.4 Node Operation 

 

Node operators can participate to the network in multiple ways. From an operational 

point of view ―watchers‖ and ―basic validators‖ are about the same (they both 

compute an up-to-date version of the ledger). ―Archivers‖ or ―Full validators‖ publish 

into a history archive which has additional cost. Figure 2 below summarizes the level 

of participation to the network of the different nodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Types of nodes and their level of participation in the Stellar network. 

Reproduced from https://www.stellar.org. 
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It is recommended that all micordistribution nodes, delivery drivers, suppliers, 

dropshippers and third-party retailers participate in the network as full validators in 

order increase network resiliency. Consumers can participate as basic validators 

since they will need to participate in the consensus algorithm. 

 

4 Delivery Optimization 
 

 

When a customer places an order through Buying.com, the order is assigned to a 

distribution center where the order will be delivered from, according to the procedure and 

rules described in the following subsection. When time comes to schedule the delivery 

from that particular dis-tribution center, and given the set of customers waiting to be 

served, the driver will be selected and the optimal route will be constructed. In general, 

deliveries are scheduled at the end of the day for next-day delivery, or every 2 hours for 

2-hour delivery. Subsections 4.1, 4.2 and 4.3 describe how the distribution center, the 

driver and the optimal route are selected, repsectively. Finally, subsection 4.4 describes 

how to dynamically update existing routes when new order requests arrive, by inserting 

customers in already planned routes in an optimal way, when this is possible. 

 
Customers that place an order for FMCG will have the option to request either a 24-hour 

delivery or a 2-hour delivery. Obviously, a 2-hour delivery will come with a higher delivery price. 

Under the 2-hour delivery guarantee, in the worst case, a driver will be selected to pickup the 

products from the distribution center and ensure delivery to the customer within 2 hours from the 

time when the order was placed, without combining any other orders. It is very im-portant that 

such orders arrive on time, otherwise the reputation of the driver will be negatively impacted. Of 

course, in case where such a delay occurs but it is the distribution center’s fault, then the 

reputation of the distribution center will be negatively impacted instead. While on a two-hour 

delivery duty, the driver’s route and schedule will not be modified dynamically. 

 
The normal mode of delivery will be the 24-hour delivery guarantee. This applies to all items 
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that do not fall under the FMCG category, as well as to FMCG for which the customer 

did not choose the 2-hour delivery option. At the end of each day (or more frequently, 

if appropriate), for each distribution center, the routes for the following 24 hours are 

scheduled in an optimal way. These routes can later be modified dynamically during 

execution, upon new customer requests. 

 

4.1 Delivery Optimization Part I: Distribution Center Node Selection 

 

Let K be the set of all customers. Suppose that customer k 2 K has just placed an 

order through the Buying.com platform for items 1; 2; :::; n with associated quantities 

q1; q2; :::; qn. We need to decide which distribution center will be selected as the 

pickup node for the order, among all available distribution centers in the region that 

have stock of the requested quantities of all the items ordered. 
 

Let J = f1; 2; :::; jJjg be the set of all nodes that represent distribution centers. Let J J 

be the subset of distribution centers that: (a) are located within a radius R from customer 

k, (b) have stock of the necessary quantities for all the items ordered, and (c) are open 

and available at the date and time of interest. We restrict our choice of the distribution 

center within the set J . Specifically, for each distribution center j 2 J , we evaluate: 

 

1. The distance dj;k from the distribution center j to the location of customer k who placed 

the order. In general, we would prefer dj;k to be as small as possible. Note that dj;k is 
 

bounded by R (i.e. 0 dj;k R). We wish to minimize 
d(

R
j;k)

 , which is a real number 

in the interval [0; 1]. 

 

2. The distribution center’s reputation score Rj, which is a real number in the interval [0; 1]. 

The value 0 represents the worst reputation score of 0%, whereas the value 1 represents 

the best reputation score of 100%. Please refer to Section 5.4 for more details on how 

 

Rj is constructed. In general, we would prefer a distribution center with a higher rating. 
 

Therefore, we wish to maximize Rj, or equivalently to minimize Rj. 
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3. The time  j that has elapsed since the last time an order was fulfilled by distribution 

center j, where  j    0 for all j 2 J . In general, a distribution center with a higher value of  j 
 

will be preferred. Incorporating j in the objective function will give a degree of fairness in the 

process of selecting the distribution center. Specifically, distribution centers that haven’t 

been selected as pickup nodes recently, will be favored. This metric will help to avoid 

ending up with a few centers that managed to get high ratings initially, getting most of the 

orders all the time, while all other centers get very few orders and eventually opt-out of the 

agreement. In order to normalize the respective component objective, we need 

 

to define  max = maxf jjj 2 J g. We wish to maximize 
j 

, where 0  

j 

1, or max max 

equivalently to minimize  j .      
       

  max      

 

4. Assume that for each item i that is sold through the Buying.com platform and has an 

expiration deadline, we have identified a threshold date, after which the item is considered 

to expire soon. Let qi;j
E
 be the number of pieces of item i in distribution center j that 

 

expire soon. Then, minfqi;j
E

; qig is the number of pieces of item i in distribution center j 

that expire soon and will be included in the order, in case the order will be fulfilled by 

distribution center j. In general, we would prefer selecting distribution center j1 over 

distribution center j2, if the first one has more items that expire soon, compared to the 
 

second one. Therefore, we wish to select the distribution center j which minimizes the 
 

  n E 
;qig 

  n E 
;qig 

 

  i=1 
minfq

i;j   i=1 
minfq

i;j  
term  P 

 n  

, which is equiv alent to maximizi ng t he t erm  P 
 n  

. The   i=1 q i   i=1 q i  

   P     P   
latter is a real number in the interval [0; 1] and denotes the proportion of the number of 

items in the order which expire soon, if the order is fulfilled by the distribution center j. It 

is a measure of urgency to deliver from distribution center j, due to potential expiration 

of its stock that is related to the order.  Note that, since 0 minfqi;j
E
; qig qi, we 

   i=1  n 
f
 i;j i

g 
 P P 

will always have 0 i
n

=1 minfqi;j
E

; qig i
n

=1 qi, which leads us to the inequality 
0  P i=1 

q
i    1.  

 

 

 n min q
E

 ;q   

 

  

   P     
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5. Let Mtotal be the order’s total worth, in tokens. Define Mj as the number of tokens missing 

from the distribution center j to cover the order’s total worth Mtotal, if the number of tokens 

that it holds is less than Mtotal; or 0 otherwise (i.e. Mj = 0 if the distribution 

center j holds at least as many tokens as Mtotal). We wish to minimize 
M

j . Note that 
 

   
M

total   

since 0   Mj    Mtotal, we get 0 

Mj 

1. By incorporating the term 

Mj 

in 
M

total 

M
total 

the objective, we allow the possibility of selecting a distribution center that owns fewer 

tokens than the amount of tokens equivalent to the value of the stock. However, in such a 

case, the greater the deficiency in tokens, the less likely it is for a distribution center to be 

selected. On the other hand, if we wish to restrict our choice of the distribution center 

among the ones which hold at least as many tokens as the order’s total worth, then we can 

consider only the distribution centers with Mj = 0, and ignore the last component of the 

objective function (or equivalently, set p5 = 0, where p5 is defined below). 

 

Combining all the factors mentioned above, we can calculate the distribution 

center’s ob-jective function F (j) separately for each j 2 J , in order to find the 

distribution center which minimizes F (j), as defined below: 
 
 
 

 

P 

  
d

j;k  j i
n

=1 minfqi;j
E

; qig  
M

j  
j2J F (j) := p1 

   P i=1 

q
i + p5 

 

(1) R  max  M total  

min  
p

2

R
j   

p
3 

p
4 n  

     5 P    

with weights p 2 [0; 1] for = 1; 2; :::; 5 such that =1 p  = 1. The importance of each 
 

component objective can be captured by assigning appropriate values to the weights 

p . For example, if the first component objective is more important than the fourth 

one, then we can assign a higher value to p1 than to p4. 

 
The objective function for the optimal selection of distribution center presented above, is the 

weighted sum of five component objectives, that seeks to find the distribution center j which si-

multaneously: (i) minimizes the distance of the distribution center from customer k who placed the 

order, (ii) maximizes the reputation of center j, (iii) maximizes the elapsed time since the last time 

an order was fulfilled by distribution center j, (iv) maximizes the measure of urgency 
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to deliver from distribution center j due to expiration of the stock of distribution center 

j which is related to the order, and (v) minimizes the missing tokens from distribution 

center j. Addi-tionally, each one of the five component objectives is normalized. 
 

For each order placed through the platform, we calculate the above objective function 

sep-arately for each distribution center j in the area which has the goods in stock, and the 

single distribution center j which yields the minimum value of the above function is selected. 

 

4.2 Delivery Optimization Part II: Driver Node Selection 

 

After an order has been placed and the distribution center has been selected as the pickup node, 

we need to select the driver that will pick up the order from the distribution center and carry out 

the delivery. In short, for the driver selection, we consider all available drivers within a radius r 

from the distribution center, and for each one of them, we calculate the driver’s objective function, 

which is based on three factors: (i) the distance between the current location of the driver and the 

distribution center, (ii) the reputation of the driver, and (iii) the last time the driver was chosen for 

a delivery. The top x drivers with respect to the objective function are notified, and the first one to 

respond gets the order. If multiple responses come within a narrow window of y seconds, 

preference is shown to the one with the best value of the objective function. 

 
More specifically, let L = f1; 2; :::; jLjg be the set of all nodes that represent drivers. We 

assume that each driver l 2 L comes with a specific vehicle of known capacity Cl. The value Cl is 

by default the total capacity of vehicle l, unless the vehicle is partially loaded, in which case it is 

the driver’s responsibility to update his vehicle’s capacity, so that the updated Cl value now 

reflects the available or remaining capacity. Note that, in the extreme case when a driver accepts 

an order while his vehicle is partially loaded and, upon arrival at the pickup location, the order 

does not fit in the vehicle because the driver failed to report the true available capacity of his 

vehicle, this is considered to be a violation of the agreement between the driver and the 

company, by the former party. In this case, the driver will be penalized and his reputation will 
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be negatively affected. 
 

Let L L be the subset of the drivers that: (a) are within a radius r from the distribution 

center at the particular time, (b) are available for work at the time, (c) have vehicles with 

enough capacity that can accommodate the order and (d) have vehicles with the 

necessary equipment needed to load and unload the orders (in case where such an 

equipment is needed). For each one of those drivers l 2 L , we calculate the following: 

 

1. The distance d(l; j) from current location of driver l to the distribution center j where the 

order will be picked-up from. In general, we prefer d(l; j) to be as small as possible. 

Therefore, we wish to minimize d(l; j), or equivalently to minimize 
d(l;j

r
)
 , where 0 

  

1. 
 

 

2. The reputation rl of driver l, which is a real number in the interval [0; 1]. The value 0 

represents the worst reputation score of 0%, whereas the value 1 represents the best repu-

tation score of 100%. Please refer to Section 5.4 for more details on how rl is constructed. 

 

In general, we would prefer a driver with a higher rating. Therefore, we wish to 

maximize rl, or equivalently to minimize rl. 

 

3. The time tl 0 that has elapsed since the last time an order was fulfilled by driver l 

(counting from the time that the previous route of driver l finished). In general, a driver 
 

with a higher tl will be preferred. Let tmax = maxftljl 2 L g. We wish to maximize 
 

tl 

, where 0  

tl 

1, or equivalently to minimize 

 tl 

. Incorporating this factor tmax tmax tmax 
 

in the objective function will give a degree of fairness to the selection of drivers, 

in a sense that it will tend to favor drivers that haven’t been selected recently for 

delivery. The reason for using this metric is to avoid the scenario where the few 

selected drivers who get the best ratings in their first few orders, end up with 

being assigned almost all of the deliveries later on, while the remaining drivers 

’starve’ and eventually opt-out of the agreement. 
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Taking into account the above factors, the driver’s objective function is calculated 

separately for each driver l 2 L . Specifically, the objective at the driver selection stage is 

to find l 2 L that minimizes the driver’s objective function, f(l), which is defined as follows: 

 

min f(l) := 

1 

d(l; j)    r    tl 

(2) r 2 l 
3
 tmax l2L    

where   i
3

=1  i = 1 and  i 2 [0; 1], 8 i = 1; 2; 3.         

P 
 

The above objective function is the weighted sum of three normalized component objectives, 
 

with weights i, i = 1; 2; 3, that essentially seeks to find the driver l which 

simultaneously: (i) minimizes the distance from the distribution center to the driver, 

(ii) maximizes the driver’s score and (iii) maximizes the time that has elapsed since 

the last time an order was fulfilled by driver l. 
 

Instead of simply selecting the single driver with the minimum value of the objective func-

tion f(l), the drivers with the x best (lowest) values of the objective f(l) are notified, and the 

first one to respond gets the order. However, if multiple responses come within a narrow 

window of y time units, preference is shown to the one with the best (lowest) value of f(l). 

 
Note that the following information needs to be communicated to the drivers, 

before they accept a route: time of start of the route, estimated duration of the route 

(or upper bound), and reward or payment for the driver. 

 

4.3 Delivery Optimization Part III: Route Selection 

 

In this subsection we present a mathematical model for selecting the optimal delivery route, once 

the distribution center, the customers waiting to be served from the particular distribution center, 

and the driver have all been selected. Specifically, we present a variation of the Traveling 

Salesman Problem with Time Windows (TSPTW) formulation, which we have adapted in order to 

solve the problem of determining the optimal route to be traversed by a specific driver and the 

schedule of visits to the customers, once the driver has been selected and the customers that 
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will be served in the respective route have been specified. 
 

In general, the TSPTW is the problem of determining a minimum cost tour in which a set 

of nodes are visited exactly once within their requested time windows. More specifically, in 

the adapted TSPTW that we propose, we have a set of customers waiting to be served and a 

single vehicle (traveling salesman) that must depart from a specific starting point, it will then 

directly visit the distribution center to load the orders, it will visit each of the customers 

exactly once and finish at a specific end-point. Each customer i is associated with a service 

time si, i.e. the amount of time that the vehicle needs to spend at the customer once the 

service starts; and a time window [ai; bi] defined by its ready time ai and due date bi. The 

time of start of service of any customer must lie within the respective time windows. This 

means that the time when the service finishes may actually be later than the due date. 

Furthermore, if the vehicle arrives at a customer earlier than their ready time, it must wait 

until the ready time. The objective is to minimize the total travel time. 
 

We formulate the adapted TSPTW on a graph G = (I; A), where I = f0; 1; 2; : : : ; n + 2g is 

the set of nodes and A is the set of arcs, defined below. Node n + 1 represents the starting 

point and node 0 represents the end-point. Node n + 2 represents the distribution center. Any 

two or even all three of the nodes 0, n + 1 and n + 2 may coincide, in case they correspond 

to the same geographical location. For instance, in the special case when the distribution 

center uses its own vehicle and driver, the starting point node n + 1, the end-point node 0, 

and the distribution center node n + 2 will all coincide. Let I1 = f1; 2; : : : ; ng be the set of 

customers. The set of arcs A I I is defined as A = f(n + 1; n + 2)g 
S

f(n + 2; j) : j 2 I1 [ f0gg 
S

 

f(i; j) : i 2 I1; j 2 I1 [ f0g; i 6= jg. Also, for each i 2 I, define 
+
(i) = fj 2 I : (i; j) 2 Ag, and 

 
(i) = fj 2 I : (j; i) 2 Ag. 

 

Let tij 0 be the travel time from node i to node j, for all (i; j) 2 A. Let [ai; bi] and si be the 

time window and service time associated with node i respectively, for all i 2 I. For the starting 

point n + 1 and end-point 0, we have sn+1 = 0 and s0 = 0. Note that sn+2 represents 

 
 

17 



 
the amount of time needed from the time when the driver arrives at the distribution center n + 

2, until the time he or she departs from it, which includes the time needed to load the goods. 

Let xij be the number of times that arc (i; j) is traversed, for all (i; j) 2 A. Let wi be 

the time of start of service of customer i, for all i 2 I1 
S

fn+ 2g. Let wn+1 be the time of 

departure from node n + 1, and let w0 be the time of arrival at node 0. Let M be large 

positive integer (say, M = 10
10

). The quantities n, M, tij’s, si’s, ai’s and bi’s are known 

parameters, whereas xij’s and wi’s are the decision variables. 
 

The vehicle must start from node n + 1, which denotes the vehicle’s starting 

position at time 0, and then go directly to the distribution center, which is represented 

by node n + 2. The vehicle must then visit all customer nodes in the set I1, and finish 

at node 0, which denotes the vehicle’s end-point. 
 

The problem is formulated as a mixed-integer linear program (MILP) as follows: 
 

X 
minimize tijxij  

(i;j)2A 
 

subject to: 
 

wn+1 = 0 
 
 

 

x
n+1;n+2 

= 1 

 

X 

 
 
 

(3) 
 
 
 

 

(4) 
 
 

 

(5) 

xij = 1 8 i 2 I n f0g (6) 

j2 
+
(i)   

xij = 1 8 j 2 I n fn + 1g (7) 
(j)    

i2

X 
  

wi + si + tij   wj    (1 xij)M8 (i; j) 2 A (8) 

ai    wi    bi 8 i 2 I n fn + 1g (9) 
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xij 2 f0; 1g 8 (i; j) 2 A (10) 
 
 

 

wi    0    8 i 2 I (11) 
 

The objective (3) is to minimize the total travel time. Equation (4) states that the 

vehicle must depart from the starting point n + 1 at zero time. Equation (5) states that it 

must then visit node n + 2, which is the distribution center (in order to load the goods to 

be delivered). Equation (6) ensures that the vehicle leaves each node exactly once, 

apart from the endpoint node 0. Similarly, equation (7) ensures that the vehicle enters 

each node exactly once, apart from the starting node n + 1. Constraints (8)-(9) guarantee 

the feasibility of the schedule, with respect to time considerations. 

 
Note that there is no check for the capacity constraint in this model. We assume 

that this happened in a previous stage, and specifically that the total demand of all 

the customers in the set I1 does not exceed the vehicle’s capacity. 

 
The MILP presented above can be implemented using a mathematical programming 

solver like CPlex and it can be used to find the exact optimal solution for small instances. 

However, the TSP and its variants, including the adapted TSPTW presented here, are NP-

hard. Therefore, for large instances, appropriate heuristics may need to be developed. 

 
Note: The adapted TSPTW can easily be extended for the case of more than one 

vehicles, into the adapted Vehicle Routing Problem with Time Windows (adapted 

VRPTW). A compre-hensive study of the Vehicle Routing Problem and its variants, 

including the classical VRPTW, can be found in Toth & Vigo (2014) (4). 
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4.4 Delivery Optimization Part IV: Dynamically updating current 

routes, upon new order requests. 
 

Scheduled routes may be modified dynamically upon new order requests, with the 

exception of 2-hour delivery routes which are not allowed to be altered once the 

driver has accepted the original order. In this subsection we will discuss how to 

dynamically insert a customer in an already scheduled route in an optimal way, for 

the cases where it is allowed to dynamically alter the routes. 
 

When a request for a new order comes in, the distribution center (DC) where the 

relevant order will be picked up from will first be selected, according to the rules 

described in subsection 4.1. The new customer who placed the order may be 

inserted dynamically in a route which is currently being executed, incorporated in an 

already scheduled route whose execution has not started yet, or a new route may 

have to be created for that particular customer. Consider the following scenarios: 

 

1. Suppose that there is already a scheduled route that involves pickup of items from 

the particular DC, but either the execution of this route has not started yet, or it has 

started but the vehicle has not left the DC yet. Then, if by adding the customer to 

that route the total load will exceed the capacity of the vehicle, we need to 

construct another route for that customer and either use another vehicle, or wait 

until the first vehicle finishes its route to be used again. In this case, depending on 

the time windows, we may wait until more orders arrive before we select another 

driver and schedule a new route, according to the rules of subsections 4.2 and 4.3. 

 
If on the other hand, by adding the new customer to an already scheduled route whose 

execution has not started (or it has started but the vehicle has not left the DC yet), the total 

load does not exceed the capacity of the vehicle, then we add the new customer to the 

existing set of customers I1 that were to be served by the particular vehicle, and we re-

optimize, by solving the MILP described in section 4.3 with the new set of customers. 
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In this case, depending on the geographic location of the nodes, the travel 

times, service times and time windows, the order in which customers are visited 

in the new route may differ from the original one, but the new route will be 

optimal with respect to minimizing the total travel time, and it will include the 

new customer (not necessarily at the end of the route). Of course, it is possible 

that due to the time windows, the new problem is infeasible; in which case, we 

need to create another route, as described in the previous paragraph. 

 

2. Suppose that there is no route scheduled for the specific DC. Then obviously 

we need to select an available driver and construct a new route for that 

customer. As before, depending on the time windows of that customer, we may 

or may not be able to wait until more orders arrive before we select a driver and 

create a new route, as described in subsections 4.2 and 4.3. 

 
3. Suppose that there is at least one scheduled route that involves pickup of items from the 

selected DC, whose execution has already started and whose respective vehicle has 

already left the DC. Let K = f1; 2; :::; jKjg be the set of all such jKj routes (where jKj 1). 

We wish to select the single route k 2 K to insert the new customer, and the right 

position within that route, so that all customers are served within their requested time 

windows, the capacity constraint is always satisfied and the increase in the total travel 

time after including the new customer is minimized. In general, the sequence in which 

customers are visited may completely change after rescheduling. 

 
Strategy A (re-optimize): For each k 2 K separately, we perform the following: We 

add the new customer to the set of customers, remove the served ones, update n as 

the number of the remaining customers of the route, and relabel the remaining 

customers as nodes 1; 2; :::; n, as well as the nodes n + 1 and n + 2 as the cur-rent 

position of the vehicle and the DC node, respectively. We then solve again the 
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adapted TSPTW using the model of subsection 4.3, and we get the total travel time  

P 
T1(k) := tijxij of vehicle k, concerning the remaining customers and includ-  

(i;j)2A 

ing the new customer. 
 
 

 

We then repeat the process described in the previous paragraph, but without includ-  
P 

ing the new customer. We then get the total travel time T0(k) := tijxij of  
(i;j)2A  

vehicle k, concerning the remaining customers and excluding the new customer. 
 
 

 

We then select the single vehicle k for which T1(k ) T0(k ) = minfT1(k) 

T0(k)jk 2 Kg, i.e. the one which gives the minimum increase in the travel 

time after including the extra customer. 

 
 
 

Strategy B: For each k 2 K separately, we perform the following: 
 

Find the point on the remaining part of the scheduled route k that is the closest to the 

DC. Suppose that originally, vehicle k was supposed to pass from this point at time 

(k). Let n be the number of the remaining customers that were scheduled to be 

served after (k), increased by one (for the new customer). Denote by n + 2 the 

position on the remaining part of the scheduled route k that is the closest to the DC. 

Then, with n + 2 as the new starting position and relabeling as f1; 2; :::; ng the set 

of the customers that were scheduled to be served after time (k) extended by 

including the new customer, solve again the adapted TSPTW of subsection 4.3, 

 
to re-optimize the part of the route after time (k), and get the total travel time 

P 
T3(k) := tijxij of vehicle k after time  (k), including the new customer.  

(i;j)2A 
 

Using the same starting node and starting time (k), we repeat the process described 

in the previous paragraph, but without including the new customer. We then get the 
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total travel time T (k) := t  x  of vehicle k after time  (k), excluding the 

new customer. 2  (i;j

P
)2A ij  ij  

We then select the single vehicle k for which T3(k )   T2(k ) = minfT3(k) 

T2(k)jk 2 Kg, i.e. the one which gives the minimum increase in the travel 

time after including the new customer. 

 

Therefore, by using either strategy A or strategy B, we can select the single 

route k 2 K in which the new customer must be inserted. The process described 

above also provides the way to construct the updated route k . 

 

Note that in scenario 3, the proposed strategies are both heuristic ones and may 

give optimal or sub-optimal solutions. Also, for both strategies A and B, we assume 

that at the time when re-optimizing starts, the sum of the total load of each vehicle 

and the demand of the new customer, does not exceed the capacity of the vehicle. 

Strategy A may work well in cases where the time windows are tight and 

dramatically affect the routes. For instance, it may be preferred when there is 

urgency to serve the new customer early. Strategy B may be more appropriate in 

cases where there is flexibility at the time when the new customer may be served. 

 

5 Platform Governance 
 

 

In this section issues pertaining to governance, consensus and settlement are covered. 

 

5.1 Self-Governance 

 

Members of the Buying.com platform are integral to the governance and operations of the net-

work. A participant can be considered a member of network if they have a Buying.com account. 

Such an account can be set up using the Buying.com application. The app and associated ac-

count is the same for all members be they consumers, microdistribution node operators or de-

livery drivers. All members form the core governing community of the platform. The platform 
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has no default voting processes, campaigns, or constitution. The governing 

community decides on an ad hoc basis to give consensus (proved against the 

network) on roadmapped platform functionality. Such functionality may include: 

 

New delivery areas to cover by the microdistribution network. 

 

Modification to existing services (pricing, dropshipping, chargeback options 

etc) New services offered by the network (drone delivery, assembly services) 

 
New rewards and partner integrations. 

 

Participation in the decision making of the Buying.com platform is voluntary. A member with 

the Buying.com app will be prompted to choose between two or more choices. These 

choices will allow for the platform to aggregate and deduce the most demanded functionality. 

With this method, the platfrom is able to govern itself in terms of core product, focusing 

exclusively on demanded functionality first, with minimal time/energy debt to the member. 

 

5.2 Consensus Algorithm: Federated Byzantine Agreement 

 

The Buying.com protocol uses a modified Stellar Consensus Protocol (SCP) an 

implementation of Federated Byzantine Agreement (FBA). 
 

The definitions and the discussion below are taken from Mazieres` (5). 
 

FBA achieves robustness through quorum slices: individual trust decisions made 

by each node that together determine system-level quorums. SCP makes no 

assumptions about the rational behavior of attackers and does not presuppose a 

unanimously accepted membership list of nodes. 
 

A quorum is a set of nodes sufficient to reach agreement. A quorum slice is the subset of a 

quorum convincing one particular node of agreement. A quorum slice may be smaller than a 

quorum. Non-federated Byzantine agreement requires all nodes to accept the same slices. 

Because every member accepts every slice, traditional systems do not distinguish between slices 
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and quorums. The downside is that membership and quorums must somehow be 

pre-approved, precluding open membership and decentralized control. 
 

FBA generalizes Byzantine agreement to accommodate a greater range of settings. FBA’s 

key innovation is enabling each node to chose its own quorum slice set. System-wide quorums 

thus arise from individual decisions made by each node. Nodes may select slices based on any 

number of criteria such as reputation or financial arrangements. In some settings, no individual 

node may have complete knowledge of all nodes in the system, yet consensus is still be possible. 

 
SCP has the advantage of being free from blocked states in which consensus is no 

longer possible. In this sense SCP prioritizes security over network liveness. SCP is the 

first provably safe consensus mechanism to exhibit four key properties simultaneously: 

 

Decentralized control: Anyone can participate in the consensus with no central 

authority approving individual nodes or overall consensus. 

 

Low latency: The network can reach consensus at timescales commensurate 

with online transactions (in the order of seconds). 

 

Flexible trust: Any user node can choose to trust any combination of parties they see fit. 
 
 

Asymptotic security: The digital signatures and hash families used by SCP can 

protect against adversaries with huge computing power. 

 

5.3 Ricardian Contracts 

 

The digital issuance of instruments can be viewed as the issuance of contracts. A 

Ricardian contract is the issue (6). Such smart contracts not only consist of code but 

additionally are allowed to contain legal prose. The rationale behind this is to give the 

code legitimacy that is rooted in the associated legal prose (7). Buying.com uses 

Ricardian contracts as a way to attach terms and conditions on a per-transaction basis. 
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5.4 Microdistribution and Delivery Driver Reputation System 

 

A reputation system will be developed to asses microdistributor nodes as well as delivery 

drivers. This will be helpful in determining staking amounts, inventory allocation and dy-

namic pricing. The reputation system that Buying.com will implement will be based on the 

well-documented Eigentrust algorithm for reputation management in P2P networks (8). 

 

5.5 Real-Time Reconciliation 

 

The Buying.com platform will provide an API to supplier partners or other third-party 

retailers that would allow them to monitor payment authorizations, dates and cash 

flows. This will be immensely helpful to such partners because it can achieve real-

time reconciliation and automate many automate back office procedures. 

 

5.6 Proof of Delivery 

 

During deliveries, drivers are responsible to keep Proof of Delivery. When at the time of 

deliv-ery the customer is present their signature will be required or some other biometric form 

of id (on the Buying.com app). This along with the date, time, and proof of arrival at the 

designated delivery location (GPS coordinates) will be recorded. If, on the other hand, the 

customer is not present at the delivery location (house) then the date of delivery, the time of 

delivery and proof of arrival at the designated (location coordinates GPS) will be recorded, 

along with a photo-graph of the place. Proof of Delivery will be achieved using a multi-

signature scheme between the delivery driver, the consumer and the microdistribution node. 

 

5.7 Settlement and Escrow Mechanism 

 

An optional smart contract-based escrow mechanism will be used to settle delivery payments 

of orders of high-enough value. This escrow mechanism will be available to customers for a 

nominal fee. The customer will pay tokens into the escrow, then the vendor will release the 
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goods which are delivered to the customer via a microdistribution node. Proof of delivery as 

described in Section 5.6, will be employed by this escrow mechanism to ascertain delivery 

and partially establish initial costumer satisfaction before releasing funds to the vendor. 

 
The Buying.com platformed has also provisioned for a returns processing mechanism. If 

a customer files an intent to return the delivered goods, then a smart contract allocates the 

released funds from the vendor to the escrow. Once the customer ships the returned items 

and the vendor accepts the return—ascertained by Proof of Acceptance, akin to Proof of 

Delivery—then the smart contract releases tokens to the customer. 

 

5.8 Chargeback Minimization 

 

A chargeback is the return of funds to a consumer, initiated by the issuing bank of the instru-

ment used by a consumer to settle a debt. Even though chargebacks were created as a form 

of consumer protection, dated industry regulations have allowed chargebacks to pose a 

threat to retailers. Consumers can use chargebacks for a number of wrong reasons, like 

avoiding re-stocking fees on order returns, ―buyer’s remorse,‖ not acting promptly resulting in 

time limit expiration and so on (9). Chargebacks can incur transaction fees for the retailer or 

even fines, and thus have a serious adverse impact on business sustainability. Minimizing 

chargebacks has been a challenge due to the number of parties involved and the complexity 

of their interactions. The escrow mechanism utilized by the Buying.com platform for returns 

processing constitutes an innovative way to minimize chargebacks. 

 

5.9 Third-Party Retailer Integration 

 

The Buying.com platform needs to bring in other retailers, manufacturers, wholesalers for drop 

shipping to work. The Genesis feature will allow all retailers, e-commerce players, distributors, 

wholesalers, even peer-to-peer network participants to upload their inventory. Genesis will know 

where and what is located in every neighborhood on every street across the United States of 

America. The asking price, condition, description of every item in Genesis will be known. 
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This information will be geo-fenced unique to each users location. 
 

To achieve real-time knowledge of existing inventory would require third parties to 

expose their inventory to the buying.com platform. However, such third parties might 

be reluctant to share inventory information publicly. This relates to inventory 

disclosure under regulatory reporting. Reporting Inventory balances of a company’s 

operating segment (financial, manu-facturing, raw materials, work-in-progress) can 

disclose previously hidden risks and thus affect valuation negatively (10, 11). 
 

In order to void the above complication Buying.com third-parties will be required 

to disclose only necessary inventory. Since IPFS is already used for record keeping 

of KYC/AML it can also store inventory in order avoid posing unnecessary burden to 

the blockchain. The system in addition to keeping the inventory it can can keep a 

user-defined threshold for each inventory item so that as soon as inventory numbers 

drop below the threshold a re-order is triggered automatically. 

 

6 Network Scalability and Effects 
 

 

Network effects are crucial for a company like Buying.com because such effects are 

the most important means to build defensibility for a tech company. The Buying.com 

ecosystem exhibits several network effects. 

 

General Direct Network Effects: The increased usage of the Buying.com service either 

as it applies to the microdistribution network or to MOQ ordering will lead to a direct 

increase in the value of the service and its users. Moreover, because of the topology of 

the network, certain subgraphs corresponding to the regional delivery networks will be 

densely connected. Such densely connected subgraphs cement people’s commitment 

to the network and according to Reed’s Law (12) the true value of such a network 

increases exponentially with respect to the number of nodes. 
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Protocol Network Effects: Such effects arise when a computational standard is used by all 

participating nodes in the network and new potential users can join the network by 

employing said protocol. This is potentially a very strong network effect because once the 

protocol has been adopted it is extremely difficult to replace. In the case of Buying.com one 

of the more well-known blockchain protocols, namely the Stellar protocol, will be leveraged 

to expedite the Buying.com protocol establishment and its ubiquitous adoption. 

 
Personal Utility Network Effects: Buying.com will have the users’ personal identity tied to 

the network. This makes the daily usage of the network essential to the personal and 

professional lives of all users. This applies to several categories of users on the Buy-

ing.com: network suppliers, consumers, users responsible for order fulfillment, owners of 

microsdistribution nodes some of which have a reputation score assigned to them (e.g., 

delivery driver and microsdistribution nodes). For people not being on the Buying.com 

network this will present significant impediments in the personal and professional since 

they cannot take advantage of the unique value Buying.com has to offer. 

 

Direct Market Network Effects: Buying.com enhance already existing offline profes-

sional distribution networks between suppliers, brick and mortar stores and 

fulfillments centers. It will achieve this by moving the entire integrated network 

online and by intro-ducing to the network a finer localization granularity for delivery. 

 
N-Sided Marketplace and Platform Effects: There are several sides to the Buying.com 

network but they can be roughly distinguished between to buyers and sellers and distribu-

tors. A network like Buying.com’s is hard to disrupt because it offers a better value propo-

sition to all three sides simultaneously. Consumers get faster delivery times at cheaper 

prices. Distribution and order fulfillment is decentralized allowing people to enter the gig 

economy with insignificant entry cost, and sellers can optimize last mile delivery costs. 
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7 Cryptoeconomics – Tokenomics 
 

 

The following subsections cover aspects of the token economy of the Buying.com 

network such as staking, pricing, and incentivisation and rewards schemes. 

 

7.1 Staking Mechanism 

 

A crucial aspect of accepting new microdistributor nodes to the existing Buying.com 

ecosystem is staking. During the onboarding process, prospective microdistributor 

nodes need to stake, i.e., deposit with the Buying.com platform a specified amount of 

BUY tokens. This staking of tokens has a dual function. First, it functions as an 

investment into the ecosystem and as a mechanism to encourage network growth in 

terms of size and consequently in terms of token value. Secondly, these tokens 

function as collateral to the value of the inventory held by a microdistributor. In fact, a 

microdistributor cannot hold inventory valued at more than the amount staked. 
 

The staked amount is flat for all new microdistributor nodes and can be 

periodically revised depending on the rating of the node provided by the network’s 

reputation system. The reputation system is described in Section 5.4. 

 

7.2 Dynamic Delivery Pricing 

 

The Buying.com platform will leverage algorithms for optimized order delivery (vid. 

Section 4) to also dynamically determine pricing. Other factors that will be taken into 

consideration when determining the price include but are not limited to the type of goods 

delivered (FMCG or not), the delivery time requested by the consumer, demand 

forecasting, MOQ level and the driver/microdistribution node reputation score. 
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7.3 Incentivization and Reward Schemes 

 

The Buying.com platform will offer several ways to incentivize engagement and 

behavior ben-eficial to the network for both microdistributors and consumers. These 

incentives will take the form of rewards. More specifically: 

 

Holding Costs: These are associated with costs of storing inventory that 

remains un-sold. Such costs include insurance, security, obsolescence, and 

rent where applicable. Microdistributor nodes need to be incentivized to store 

goods that are not as fast moving as others. This incentivization can be 

achieved rewarding nodes with a higher percentage of the delivery cost. 

 

Delivery Options: Consumers placing an order using a the Buying.com will be 

given several delivery options. 

 

1. Door-to-door home delivery within 24 hours is the standard option. 

 
2. Door-to-door home delivery within 2-hours is only applicable to FMCG. 

 

3. Option to pick-up from a local microdistribution node (e.g., walk three 

doors down to the neighbor’s garage to pick up your order). 

 

The reasons for the pick-up option being more attractive to certain consumers becomes 

clear when one considers issues of security and convenience. This options caters to 

people with busy schedules who might not be present at home during delivery times. 

Hence, any parcel left outside the house becomes liable to theft. Such consumers might 

prefer to pick up their order at their convenience. For this reason no discount will be offered 

for the pick-up option. This reflect a growing trend among established industry players like 

Amazon of making delivery more customer-centric. The delivery destination is no longer 

tied to a particular place (e.g., home) but is customer location-aware. 
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Subscription Plan: When ordering FMCG on the Buying.com app, the system 

will the consumer the option to an option to switch to a subscription plan. 

Pushing consumers towards recurrent orders helps with better demand 

forecasting and inventory optimization for the microdistribution nodes. Switching 

to a subscription plan will be incentivized by offering additional price reductions. 

 

Recommender System: A product recommendation system alerts consumers to further 

price reductions opportunities. Buying.com has the ability to detect ordering patterns 

(e.g., locality and seasonality) by using AI and machine learning techniques and 

recom-mend to the consumer to join a particular order pool. This has the effect of 

maximizing the probability of achieving MOQ levels and thus wholesale pricing. 
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